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ABSTRACT: Aggregation is a key process in understanding the fate and
transport of anthropogenic particulate matter, namely, nanoparticles and
microplastics, in aquatic environments. Recent research has subdivided
aggregation into two processes: homoaggregation, where two like particles
aggregate, such as two fragments of microplastic, and heteroaggregation, where
two unlike particles aggregate, such as a nanoparticle and sediment. Of the two
processes, heteroaggregation is generally assumed to be more important because
anthropogenic particles are much less concentrated than their naturally occurring
counterparts. This assumption remains largely untested in many natural settings,
and most aggregation models discount the process of disaggregation entirely. To address these deficiencies, we created a statistical
thermodynamic aggregation model to predict the steady-state size distribution of any two-particle system, accounting for
homoaggregation, heteroaggregation, and disaggregation. The results of the model confirm that homoaggregation is likely a
negligible process for the fate of nanoparticles and microplastics. However, the model predicts that heteroaggregation will be
incomplete, with at least 10% of the nanoparticles or microplastics remaining unaggregated (i.e., monomeric form) even under
favorable bonding conditions and large concentration disparities (i.e., surrounded by a far greater concentration of secondary
particles). Our model also predicts that heteroaggregation is influenced by the magnitude of the enthalpy of bonding (Hb) between
the anthropogenic particle and the larger natural particle. While these predictions require experimental verification, the implications
of this study highlight the critical need to consider and carefully examine disaggregation in the context of heteroaggregation (and
homoaggregation) of anthropogenic and natural (in)organic particles.
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■ INTRODUCTION

Anthropogenic particulate matter has emerged as the latest
class of potential contaminates to catch the public’s attention.
Concern for nanoparticles is based on the novel properties of
this material and/or the potential effects of intentional or
unintentional exposure of nanoparticles to humans and the
environment.1−6 More recently, public concern has shifted to
microplastics and their effect on organisms that dwell within
rivers, lakes, and oceans.7−10 Despite the wide range of
materials that are encompassed in “anthropogenic particulate
matter”, all of these materials are thought to share similar
processes that control their fate.7,11,12 A key fate-determining
process shared between all types of anthropogenic particulate
matter as well as natural particulate matter is aggregation,
whereby particles stick together.7,12,13

Much of the scientific understanding of aggregation has been
developed through application of a kinetic model, generally
referred to as the von Smoluchowski equation
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where the concentration of particles of a given size fraction (n)
changes with a rate constant equal to the product of the
frequency of collisions (K) and the probability of attachment
(α), which is a value between 0 and 1 that is proportional to
the energy barrier impeding attatchment.14−17 This relatively
simple equation has proven to be a powerful tool to
understand the aggregation of nanoparticles and microplastics.
Both experimental and theoretical studies have yielded two
important conclusions with respect to the aggregation of
anthropogenic particulate matter, which can be used to guide
ongoing work. First, homoaggregation or aggregation between
two like materials (e.g., two silver nanoparticles) is
negligible.7,18−20 Second, heteroaggregation or aggregation
between two unlike materials (e.g., a nanoparticle/microplastic
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and natural sediment) occurs completely and nearly instanta-
neously under environmentally relevant surface water con-
ditions.19,21−23

These two conclusions are based on the expectation that the
concentration of anthropogenic particulate matter is dwarfed
by that of natural particles in the environment. Therefore, no
matter how large the energy barrier and correspondingly small
α, the sheer number of natural sedimentary particles will
overcome any energy barrier leading to heteroaggreation.24−26

However, these predictions are extrapolated from experiments
on the early aggregation processes and a theoretical model that
does not account for disaggregation.15,18,27,28

Disaggregation, while considered an important part of
natural systems, is difficult to study experimentally using the
kinetic approach. The simple two-term model, shown in eq 1,
when expanded to account for heteroaggregation becomes a
six-term model, with the majority of the added terms having no
theoretical basis for estimation.29 Additionally, the exper-
imental methods to study aggregation are optimized for the
early stage of aggregation to measure α when disaggregation is
a small factor because there are few aggregates to disaggregate.
As a result, the process of disaggregation is often ignored in
studies of the aggregation of anthropogenic particulate matter.
However, disaggregation has been experimentally observed in
homoaggregated nanoparticles, after the addition of natural
organic matter, reduction of ionic strength, and/or addition of
shear stress.30−35 Additionally, there is experimental evidence
that aggregate breakup occurs for 0.25−2 μm carboxylated
polystyrene from the primary energy minima predicted by the
extended DLVO theory.36,37 Furthermore, as a result of the
larger size of microplastics, disaggregation is predicted to have
a greater role in the environmental fate of these larger
anthropogenic particles.7

One way around the challenge presented by the kinetic
aggregation model is to use a different model, specifically a
maximum entropy model, to examine disaggregation. There
have been several different formulations of the maximum
entropy model over the years.38−41 All of these stem from the
recognition that if aggregation experiments run for a
sufficiently long period of time, then a self-preserving size
distribution is reached, indicating that a steady-state form or a
dynamic equilibrium is achieved.38−41 Interest in the maximum
entropy model has waned over the years and dropped into
obscurity in part because the formulators of the method were
reliant on analytical expressions of the model that could not
account for the effect of floc strength.42

A new formulation, independent of the past maximum
entropy effort, was recently proposed by Sokolov et al. and
analytically refined by Kaẗelhön et al.43,44 Their model does
not rely on entropy alone. Rather, entropy is used to drive the
solution of the Gibbs free energy equation (G = H − TS),
where the enthalpy term (H) essentially accounts for the floc
strength. Additionally, an analytical solution is no longer
required for the maximum entropy model because computers
can now be used to numerically maximize the entropy of the
system.43,44

Sokolov et al. demonstrated that their model is capable of
adequately predicting the homoaggregated size distributions
for a wide range of nanomaterials, such as Ag, Au, Fe2O3, and
Bi2O3.

43,45−48 However, the major drawback of their approach
is the use of a brute-force method to find a solution, testing
every possible combination for a given number of monomers
and available aggregation states.43 This leads to extremely long

computational times for even relatively simple systems.
Another drawback to the model of Sokolov et al., as
formulated, is that it can only describe homoaggregation.43 It
cannot be use to describe heteroaggregation, which is the
process of primary interest to studies of anthropogenic
particles in the environment.12,26

Herein, we lay a theoretical foundation to study hetero-
aggregation of anthropogenic particles, like nanoparticles and
microplastics. This is accomplished by generalizing the
maximum entropy model proposed by Sokolov et al. to
include a description for the aggregation of two unlike
materials (e.g., a nanoparticle and natural particle).43 Our
heteroaggregation model was built in a number of steps. First,
we replaced the brute-force computational method of Sokolov
et al. with a technique of constrained optimization.43 Our new
computational approach yielded results identical to the original
homoaggregation model in a fraction of the time.43 Next, we
introduced a second particle into our model to assess the effect
that two particles have on one another even when they cannot
make contact. The final step in the construction of the full
aggregation model was to allow the two particles to directly
interact. The sensitivity of the full model parameters was tested
and yielded some expected predictions (e.g., negligible
homoaggregation of anthropogenic particles) as well as a few
surprises (e.g., incomplete heteroaggregation of anthropogenic
particles to natural particulate matter). Utilization of this
approach provides a simple model for understanding nano-
particle and microplastic aggregation that intrinsically accounts
for disaggregation, a process that may be important to the fate
and transport of emerging anthropogenic particles.

■ METHODS

The governing equations of the homoaggregation model
proposed by Sokolov et al. are presented in Table 1.43 These
equations were implemented in MATLAB version 2018b using
the constrained optimization routines of the software. To
determine the solution, we vectorized each of the equations in
Table 1 and used the interior point algorithm to minimize the
Gibbs free energy of the system under the assumption of
Sokolov et al. that the aggregates form in a close-packed
arrangement of monomers.43

Three modifications to the homoaggregation model were
required to transform it to describe heteroaggregation. (i) The
definition of N (the total number of particles in the system)
was changed to be the sum of the particles in all available
aggregation states, which is consistent with the definition of the
mole fraction used in the original homoaggregation model. (ii)
The constraint function was modified to have an additional
constraint, namely, the conservation of the initial number of
both the primary anthropogenic particle (A) and the secondary
natural heteroparticle (B). (iii) The Hb term in the Gibbs free
energy equation becomes a multiple value vector with one
enthalpy of bonding for each bond type, e.g., H̅b = {HbA−A,

HbA−B, HbB−B}. A consequence of this modification is that ni (the
number of bonds in an aggregate) becomes a matrix containing
the integer number of bonds of each type in an aggregate. In
keeping with the close-packed aggregate assumption used by
Sokolov et al., a maximum aggregation state was set at the
tetramer (i = 4).43 This maximum is necessary because, under
the close-packed assumption, the pentamer (i = 5) and all
larger aggregation states are degenerate (i.e., having multiple
possible arrangements of the A and B particles).
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While the model was being tested, we found that the
numerical solver did not always converge to a solution as the
number of particles A and B became more disparate. This was
likely due to a feature scaling problem. To solve this problem,
two model variants were implemented to ensure a solution.
The first variant called the “iterative” implementation was
based on the observation (presented in the Results) that the
more concentrated of the two particles adopts the homoag-
gregation distributions reported by Sokolov et al.43 Therefore,
the homoaggregated distribution of the more concentrated
particle could be found first and then used as the initial
condition for the full heteroaggregation model. This iterative
implementation thereby solves the feature scaling problem by
making the model more likely to start in the correct attractor
basin.
The second variant, called the “simplified” implementation,

solves the feature scaling problem by treating the secondary
particle (B) as a monomer whose aggregation state is of no
interest. This reduces the number of terms that the
optimization algorithm needs to solve the feature scaling
problem and makes the energy minimization entirely depend-
ent upon the feature of interest, that is, the primary particle
(A). This change is due to the observation (also presented in
the Results) that the more concentrated particle behaves as if it
were the only particle in the system. Figure 1 shows the
heteroaggregation system with the close-packed aggregation
states and the aggregates allowed by each implementation
(iterative and simplified).

■ RESULTS
Application of the Numerical Solver to the Homo-

aggregation Model. A statistical thermodynamic hetero-
aggregation model was developed over the course of several
steps that were evaluated on the basis of how the model
worked and the results produced at each step. First, a
numerical solver was added to the method of Sokolov et al.,
replacing their brute-force solution.43 The numerical solver
successfully reproduced their results, as evidenced by SI Figure
1 and SI Table 1 of the Supporting Information, which
replicate the data of Figure 5a and Table 3 in the original paper
by Sokolov et al. For comparison, the difference between the
values is reported in SI Table 2 of the Supporting Information.
The benefit of using the numerical solver is clearly illustrated

by the time that it took to find a solution. Beginning with an
initial 200 monomers, Sokolov et al. reported finding solutions
for their entropy-only model in 180 and 750 min for the imax =
10 and 11 aggregation states, respectively.43 By comparison,
our numerical optimization solved each problem in under 1 s.
More impressively, the numerical optimization technique does
not have a time penalty for increasing the initial number of
monomers, allowing for more realistic concentrations to be
modeled.

Entropy-Only Heteroaggregation. The next step in
building the full heteroaggregation model was to add a second
particle to the system. This was done in multiple stages,
starting with the case that prevented heteroaggregation,
allowing only homoaggregation to take place. This step
permitted us to isolate the effect of varying the relative
concentration of the two particles. Because heteroaggregation
was prevented, we expected both particles to form homoag-
gregation distributions at maximum entropy. However, this
was not the case, as illustrated in Figure 2. Instead, the two
different particles appeared to influence one another even
though they could not aggregate.

Table 1. Governing Equations of the Statistical
Thermodynamics Model, Where G Is the Gibbs Free Energy
in kJ mol−1, H Is the Enthalpy in kJ mol−1, T Is the
Temperature in Kelvin, and S in the Entropy in kJ K−1

mol−1 a

aNi is the number of aggregates in the ith aggregation microstate; Hb
is the enthalpy of bonding with units kJ mol−1 contact point−1

implemented as a vector with one Hb for each type of bond in the
model {A−A, A−B, and B−B}; ni is the number of each bond in the
ith aggregation microstate; kb is the Boltzmann constant; N is the total
number of particles in the system; and xi is the mole fraction of the
aggregates in the ith aggregation microstate defined as xi = Ni/N. In
the constraint function, i is the total number or particles in each
aggregate, A is the number of the primary anthropogenic particles in a
given aggregate, B is the number of secondary natural heteroparticles
in a given aggregate, NA,B is the number of aggregates containing some
number of A and B particles (e.g., N2,1 describes the AAB aggregate),
and Nint is the initial number of monomers of a given type A or B,
respectively.

Figure 1. Two-dimensional representation of allowed aggregation
states, where blue circles (labeled A) represent the primary
anthropogenic particle and the larger orange circles (labeled B)
represent the natural heteroparticle (not to scale). All microstates are
allowed in the iterative model. The simplified model uses only the
enclosed microstates (dotted line) and the secondary B particles,
which are treated as monomeric. Note that the term “microstate”
describes the specific configuration of a thermodynamic system as a
result of thermal fluctuations and may be used for both micro- and
nanoscale particles. In subsequent figures, a homodimer is shown as
AA or BB, a homotrimer is shown as AAA or BBB, a heterodimer is
shown as AB, a heterotrimer is shown as AAB or ABB, etc.
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When the two particles are in equal concentrations (Nb/Na
= 1), both particles have the same distribution (Figure 2).
However, this distribution is not the homoaggregation
distribution reported by Sokolov et al.; instead, it is slightly
skewed to the monomeric state.43 Figure 2 shows that, as the
concentration of B increases, it is less affected by A (i.e., the
other particle in much lower concentration) and its
distribution becomes equivalent to the homoaggregation
distribution found by Sokolov et al.43 Meanwhile, the
distribution of A becomes increasingly more monomeric as
the concentration of B increases (see Figure 2). These
observations suggest that, in mixed particle systems, homoag-
gregation is unlikely for the less concentrated particle (A)
because there are simply too few of these particles to collide
with one another. Varying the initial conditions of the model
(e.g., setting both particles to the predicted optimal
homoaggregation distributions) did not alter the results,
which continued to adopt the same distributions shown in
Figure 2.
In the next step, we ran the full heteroaggregation model

under entropy-only conditions, allowing for both homoag-
gregation and heteroaggregation. The von Smoluchowski
equation (i.e., the kinetic model; eq 1) predicts that the less
concentrated particle (A) should become fully heteroaggre-

gated (i.e., no free or homoaggregated particles) as the relative
concentration becomes more disparate. This is because any
energetic barrier to aggregation should be overcome as a result
of the dwarfed particle concentration (Nb ≫ Na). However,
our entropy-only heteroaggregation model shows a different
result.
The results of the model (Figure 3) show that, when the two

particles are in equal concentrations (Nb/Na = 1), then their
distributions mirror one another. In this case, about 36% of
each particle is homoaggregated, 24% of each particle is
heteroaggregated, and 40% of each particle is in the monomer
form. When the concentration of the B particles is increased
(Nb/Na = 10, 100, 1000, and 10 000), the B particle reverts to
the homoaggregation distribution with a negligible percent in
the heteroaggregated form. Importantly, this observation
supports both the simplified and iterative implementation of
the full heteroaggregation model. When the two different
particles are in disparate concentrations, the more concen-
trated particle B behaves as if it was the only particle present
and its distribution does not change in response to the other
particle (A). In this instance of entropy-only conditions, B
maintains the entropy-only homoaggregation distribution
found by Sokolov et al.43

Meanwhile, the A particle does decrease to 0% homoag-
gregation, which is also predicted with eq 1. However,
heteroaggregation does not increase to 100%. Instead, a
maximum of 45% of particle A becomes heteroaggregated, with
these aggregates containing only a single A particle. The
remaining 55% of particle A is predicted to be in the
monomeric form (e.g., see Figure 3a). The key prediction here
is that entropy could overcome the sheer number of natural
particles relative to anthropogenic particles.

Assessing the Role of the Enthalpy of Bonding (Hb).
The results described above address the role of entropy on
particle distributions within an aggregate. The next step is to
assess the enthalpy of bonding (Hb). Sokolov et al. tested only
three possible values for Hb, with the 5 kJ mol−1 contact
point−1 being the most extreme value of Hb.

43 Following their
lead, we ran our simplified model with the dimer (i = 2) as the
maximum permitted aggregate size and varied HbA−A and HbA−B

between −5 and 5 kJ mol−1 contact point−1 in steps of 500 J
mol−1 contact point−1.
Figure 4 displays the percentages of A in each aggregation

state (A, AA, and AB) for relative concentrations Nb/Na = 1
and Nb/Na = 100. These results reveal that bonding conditions
play a significant role in the end results of the predictive model.

Figure 2. Results of the iterative heteroaggregation model under
entropy-only, non-interacting conditions (i.e., no A−B bond is
possible), where the relative concentration of the primary
anthropogenic particle (A) and the secondary natural particle (B)
are varied. Results are expressed as a percentage of Nint, the initial
number of monomers of the respective particle in each aggregate. For
example, if there are initially 1000 particles of A with 175
homodimers, then the percentage of Nint is calculated as (175
homodimers) × (2 monomers/homodimer)/1000 initial monomers
= 35%.

Figure 3. Results of the complete iterative heteroaggregation model under entropy-only conditions, where the relative concentration of the primary
particle (A) and the secondary natural heteroparticle (B) are varied. (a) Relative percentage in NA,int, the initial number of monomers of A. (b)
Relative percentage in NB,int, the initial number of monomers of B. Categories not shown in either panel have none of their respective monomers
(0%). Results are expressed as a percentage of Nint, the initial number of monomers of the primary particle in each aggregate. Note the difference in
the y-axis scale compared to Figure 2.
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Positive Hb values shift the distribution to the monomer,
whereas more negative Hb values shift the distribution to an
aggregated state. Figure 4 also supports the prediction that
homoaggregation of anthropogenic particles is negligible in
most environments. Less than 10% of particle A is predicted to
be homoaggregated under even the most favorable conditions
(Hb = {−5, 5, 0} kJ mol−1 contact point−1; relative
concentration Nb/Na = 100). This percentage drops further
as the difference in the particle concentration becomes more
disparate. For example, Table 2 shows that only 1.1% of
particle A is homoaggregated at Nb/Na = 1000. Even under the
most favorable bonding conditions proposed by Sokolov et
al.43 (Hb = {−5, −5, 0} kJ mol−1 contact point−1), our model

predicts incomplete aggregation, with 10% of the A particles
remaining as monomers in the Nb/Na = 100 test. In short, our
results for the bonding enthalpy disagree with the prediction of
von Smoluchowski’s kinetic model (eq 1) of complete
heteroaggregation.
The results of our model displayed in Figure 4 and Table 2

allowed for only the dimer aggregation state. To test whether
this condition impacted the results, the simplified model was
run for trimers, removing the close-packed assumption. This
means that the two A particles in the ABA trimer are not
touching one another. For these simulations, we also set Hb to
{0, −5, 0} kJ mol−1 contact point−1, thereby maximizing the
chance for heteroaggregation.

Figure 4. Assessing the role of enthalpy of bonding (Hb). Results of the simplified heteroaggregation model for the relative concentrations Nint,B/
Nint,A = 1 and Nint,B/Nint,A = 100 as the enthalpy of bonding of both the A−A (HbA−A) and A−B (HbA−B) bonds are varied between −5 and 5 kJ mol−1

contact point−1. Results are expressed as the percentage of initial primary particle monomers present in each aggregation microstate.

Table 2. Maximum Percentage of Primary Particle A in Each Aggregation State in the Range from −5 to 5 kJ mol−1 Contact
Point−1 for Each Relative Concentration of the Two Particles from Nint,B/Nint,A = 1 to 1000a

Nint,B/Nint,A = 1 Nint,B/Nint,A = 10 Nint,B/Nint,A = 100 Nint,B/Nint,A = 1000

A 84.4 87.5 88.2 88.3
AB 64.9 87.1 88.2 88.3
AA 70.2 40.0 9.5 1.1

aThe maximum percentage of A was always found at the Hb (enthalpy of bonding) values of {5, 5, 0} kJ mol−1 contact point−1; the AB maximum
was always found at the Hb values of {5, −5, 0} kJ mol−1 contact point−1; and the AA maximum was always found at the Hb values of {−5, 5, 0} kJ
mol−1 contact point−1.
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Figure 5 shows the results of this model as a function of the
relative concentration (Nb/Na). These data reveal that the
additional aggregation state does not make a difference at high
relative concentrations, which is expected for most environ-
ments (i.e., smaller concentration of anthropogenic particles
relative to natural sedimentary particles). This result can be
explained using the same rationale for the lack of formation of
homoaggregated dimers. The heteroaggregates create, in
essence, another low-concentration particle class. Because
both classes (A and AB) are in low concentrations, they are
unlikely to encounter one another to aggregate and form larger
structures.

■ DISCUSSION

The process of aggregation, the joining of two or more
particles into one, is a phenomenon studied across a wide
number of disciplines. Recent studies on the fate of
nanomaterials in aquatic environments have documented a
need to be more specific with aggregation terminology, a
finding that is also shared by those studying micro-
plastics.7,11,49 Specifically, aggregation should be split into
two distinct processes: (i) homoaggregation or aggregation
between two like particles (e.g., two microplastic particles) and
(ii) heteroaggregation or aggregation between two unlike
particles (e.g., a nanoparticle and a clay particle). However,
splitting these two processes significantly increases the
complexity of the kinetic aggregation model, the most
commonly used aggregation model (see eq 1).
To counter this complexity, researchers have attempted to

simplify their models by explicitly or implicitly ignoring
homoaggregation and disaggregation processes, with the
assumption that both processes provide only minor contribu-
tions. Evidence in support of this assumption comes from
fitting a simplified model to experimental results obtained
under conditions where disaggregation is unlikely (e.g.,
reaction in an unstirred beaker). However, there is recent
acknowledgment that these examples hide complexity and may
not hold under more realistic conditions.12 Additionally, more
studies have been conducted that show natural and
anthropogenic particles do, in fact, readily break up (i.e.,
disaggregate) under turbulence and changes in ionic strength,
which may then lead to increased homoaggregation or
monomeric anthropogenic particulate matter.30−34

In this paper, we have created a simple model that can
account for disaggregation as well as the two different forms of
aggregation (homo and hetero) by extending and generalizing
a previously described maximum entropy model for
aggregation.43,44 Instead of the focus on the early aggregation
process, the steady-state or equilibrium state is used to provide
more generalizable insight on where anthropogenic particulate
matter will ultimately end up. While our model is developed
from a recent description of the maximum entropy model for
nanoparticles, we hypothesize that it will be applicable for a
variety of other systems.

Implications of Using a Numerical Solver. Perhaps the
greatest advance of the model proposed by Sokolov et al. was
the use of computing power to maximize entropy rather than
relying on analytical solutions.38−43 However, the method that
they developed was a bit crude because it determined the
maximum entropy solution by brute-force testing every
possible combination of particles and aggregates. While this
approach does indeed guarantee an optimal solution, it has one
significant drawback, computation time. For example, Sokolov
et al. reported that a solution for 200 initial particles with 9
possible aggregation states was found after 30 min.43 This time
increased to 180 min with 10 aggregation states and to 750
min with 11 aggregation states.43 Expanding this model for
heteroaggregation with disparate particle concentrations would
therefore be untenable using the brute-force approach. Instead,
another solution is necessary, namely, a numerical solver that
finds the maximum entropy using algorithmic means.
The results of our numerical solver (SI Figure 1 and SI

Table 1 of the Supporting Information) are not only in
agreement with the brute-force solution by Sokolov et al., but
our solutions were also determined in a fraction of the time (1
s versus 750 min for 11 aggregation states).43 It is worth noting
that there are some subtle differences in the solutions. First,
the solution from the numerical solver will never be able to
find the exact integer solution, like Sokolov et al., because they
used a “test every combination” approach.43 This is because
numerical solvers do not find integer solutions; instead, they
determine a decimal solution that is close to the integer
solution. As an example, in the case of imax = 2 and Nint = 200,
the numerical method finds N1 as 89.44 and N2 as 55.28, while
the “test every combination” approach yields N1 = 90 and N2 =
55. The difference between the two results is minor but
significant enough to create error at low Nint, even though the
Gibbs free energy of the numerical solution is slightly larger
than that of the integer solution.
As Nint grows, the two solutions converge because the

numerical solution finds the asymptotically correct solution. In
the example above, when Nint is increased to 2000, the
numerical method finds N1 = 894.42 and N2 = 552.78 and the
integer solution finds N1 = 894 and N2 = 553. Thus, the
numerical optimization achieves an overly precise solution, but
the effect of this precision decreases as the number of particles
increases.
It is possible that the numerical solver will not determine the

true global statistical maximum entropy because it converges to
a local extreme or fails to converge because of poor initial
conditions. This issue is magnified as the number of possible
aggregation states increases. In fact, the iterative and simplified
models were implemented to mitigate this problem. The
approach of the iterative solution is based on the observation
that, as the concentration of the secondary particle increases
relative to the primary particle, the secondary particle reverts to

Figure 5. Percentage of A monomers in each category for the
simplified model with an imax = 3 run at Hb = {0, −5, 0} kJ mol−1

contact point−1, maximizing the heteroaggregation potential, as a
function of the relative concentration. These data illustrate that
adding more aggregation states does not shift the distribution toward
increased aggregation.
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the homoaggregation distribution (as shown in Figure 2).
Therefore, the homoaggregation distribution of the secondary
particle can be used in the initial condition, which limits the
amount of change necessary to find the solution. This also
makes the model more likely to start in the correct attractor
basin.
The simplified approach, on the other hand, works by

reducing the number of possible aggregation states. The
benefit of both solutions is that the final solution is in essence
dictated by changes to the distribution of the primary particle.
However, both solutions do not necessarily ensure that the
true global maximum is found, although they do make it more
likely to find the optimal solution. A guaranteed true maximum
can be found using global optimization techniques, namely,
sampling a wide number of initial conditions and comparing
the outcomes.
Role of the Enthalpy Term. The addition of the enthalpy

term is another advance that Sokolov et al. made to previous
maximum entropy models. The model no longer maximizes
the entropy of the system, rather it minimizes the Gibbs free
energy of the system.43 This important change was only
considered in passing by Sokolov et al. noting that aggregation
is promoted with a more negative enthalpy of bonding,
whereas lower aggregation is observed with a more positive
enthalpy.43 Our work expands on this by demonstrating that
the enthalpy of the bonding term is key to the development of
a more generalized model for heteroaggregation (see Figure 4).
The enthalpy term (H = ∑i=1

imaxNiHbni) consists of three
components: Hb, the enthalpy of bonding; ni, the number of
contact points in an aggregate; and Ni, the number of
aggregates of size i. Ni is the component of interest determined
by the numerical solver and, therefore, requires no further
discussion. The other two components Hb and ni are both
chosen by the modeler and, therefore, require a more thorough
consideration.
The ni term requires an assumption to be made about how

particles in an aggregate are held together. Two limiting cases
were proposed by Sokolov et al.: the linear chain model and
close-packed aggregate model.43 Herein, to allow for easier
comparison to Sokolov et al., we choose the close-packed
model.43 The choice to focus on the close-packed limit was
made because the linear chain model yields results in multiple
degenerate configurations after i = 2, whereas the close-packed
model generates multiple configurations after i = 4. However,
neither limiting case is a mandatory choice, and other, perhaps
more realistic, aggregate geometries can be used. These might
include ballistic, diffusion-limited, or reaction-limited assump-
tions of the aggregate structure and use of a non-integer
number of bonds to account for degenerate aggregation
states.50−52 The results from these models could absolutely be
used to inform assumptions relevant to ni. For example,
Teichmann et al. found that, as aggregate size grows, most
particles are attached to two other particles.50 While this is the
case for homoaggregation, the models could be adapted to
heteroaggregation and with a large enough sample of
aggregates deriving mean values of ni for smaller aggregates.
Unlike the ni term, one cannot make assumptions to

determine the Hb term. Therefore, the enthalpy of bonding
represents the largest unknown in the model. This is important
to appreciate because Hb has a significant effect on the final
distribution that is predicted by the model (see Figure 4).
When the model was run with Hb set to {0, −10, 0} kJ mol−1

contact point−1 for Nint,B/Nint,A = 100, the percent

unaggregated dropped to 1.7%, which is much closer to
complete heteroaggregation (Figure 4).
The solution space used in Figure 4 was adopted from

Sokolov et al., who chose the range seemingly arbitrarily. It is
therefore unknown whether the −5 to 5 kJ mol−1 contact
point−1 range is too large or too small for real-world systems.43

This range seems reasonable based on the work of Michels et
al. for microplastics. They found incomplete heteroaggregation
of marine biogenic particles with only 40−90% of the
microplastics included in aggregates, depending upon the test
conditions.53 Importantly, these percentages are in line with
predictions from our statistical thermodynamic model for Hb

values ranging from entropy-only to close to −5 kJ mol−1

contact point−1.
Speculating more precisely on the true range of Hb is mostly

futile because the model has only been directly tested for
homoaggregation, which has already been described ad-
equately by the entropy-only distribution (Hb = 0 kJ mol−1

contact point−1). This offers no additional insight on the
expected range other than it will include 0 kJ mol−1 contact
point−1. We would expect that, for stable systems, Hb would be
≥0 because 0 was shown to be appropriate for stable
distributions by Sokolov et al. and increasing Hb shifts the
distribution toward a monomeric distribution.43 In unstable
systems, we expect Hb to be <0 (i.e., negative), which would be
expected to predict a greater degree of aggregation. In the
specific case of oppositely charged particles, Hb is predicted to
be ≪0 (i.e., very negative), to the point where the model
would predict the monomers to be completely aggregated.
Additionally, we hypothesize that Hb may be analogous to the
sticking coefficient, α, in the kinetic model (eq 1) in that it is a
property intrinsic to the system governed by the DLVO or
extended DLVO theory. This would mean that the usual
caveats of varying surface charge, pH, ionic strength, presence
of natural organic matter or extracellular polymeric substances,
etc. are likely to change Hb for a given system.
The challenge then becomes how to experimentally

determine Hb, so that its magnitude can be assessed and
compared to theory. The first option would be to collect
heteroaggregation data using a single-particle technique, like
nanoparticle tracking analysis or particle impact coulometry, as
performed to validate the homoaggregation data.43,45−48 Then,
the resulting distribution was fit with Hb as an additional fitting
parameter. While this technique is possible it has several
drawbacks. It is, in essence, laying on a second numerical
optimization to produce the distribution, which adds another
layer of complexity and source of failure. Single-particle
techniques also suffer from a “needle in a haystack” problem
as a result of the anthropogenic particles being in low
concentration under realistic environmental concentrations.12

Additionally, the particle impact coulometry technique, while a
promising analytical technique advocated for by others (e.g.,
Sokolov et al.), is currently facing reliability issues that are still
being debated in the literature and requires significant skill in
electrochemistry to obtain meaningful results.54−58 An
alternative, more straightforward approach would be to
measure Hb directly using atomic force microscopy, where
one could measure the energy of the surface−tip bond.59,60

This method has the added benefit of being able to directly
compare experimental measurements to the DLVO theory.59
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■ CONCLUSION
We have developed a statistical thermodynamics model
focusing on the steady-state distribution that shows promise
toward developing a more realistic, mechanistic-based
description of nanoparticle and microplastic heteroaggregation
and, therefore, fate in aquatic environments. Our model
confirms a key conclusion of the much used kinetic aggregation
modeling (eq 1). That is, homoaggregation of anthropogenic
particulate matter is negligible because concentration dispar-
ities are so great that two nanoparticles (or two microparticles)
are unlikely to interact with one another. Our model also
provides another interesting prediction that runs counter to the
kinetic aggregation model. Here, we show that heteroaggrega-
tion does not necessarily go to completion, even under
favorable bonding conditions, where secondary particle (e.g.,
natural sediment particle) concentrations are in excess of the
primary particle (e.g., nanoparticle or microplastic). This
would mean that these anthropogenic particles (nanoparticles
and microplastics) are unlikely to settle to stream beds with
sediment. Instead, nano- or microparticles may be transported
through river systems to the ocean. If nothing else, this new
model should serve to remind us that disaggregation, a process
that is often overlooked, is critical and certainly worth more
directed and careful study when considering both homo- and
heteroaggregation.
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A.; Marcomini, A.; Peijnenburg, W.; Quik, J. T. K.; Seijo, M.; Stoll, S.;
Tepe, N.; Walch, H.; Von Der Kammer, F. Strategies for Determining
Heteroaggregation Attachment Efficiencies of Engineered Nano-
particles in Aquatic Environments. Environ. Sci.: Nano 2020, 7 (2),
351−367.
(13) Wang, X.; Bolan, N.; Tsang, D. C. W.; Sarkar, B.; Bradney, L.;
Li, Y. A Review of Microplastics Aggregation in Aquatic Environment:
Influence Factors, Analytical Methods, and Environmental Implica-
tions. J. Hazard. Mater. 2021, 402, 123496.
(14) Burd, A. B.; Jackson, G. A. Particle Aggregation. Annu. Rev.
Mar. Sci. 2009, 1 (1), 65−90.
(15) Liu, J.; Hwang, Y. S.; Lenhart, J. J. Heteroaggregation of Bare
Silver Nanoparticles with Clay Minerals. Environ. Sci.: Nano 2015, 2
(5), 528−540.
(16) Besseling, E.; Quik, J. T. K.; Sun, M.; Koelmans, A. A. Fate of
Nano- and Microplastic in Freshwater Systems: A Modeling Study.
Environ. Pollut. 2017, 220, 540−548.
(17) Lick, W. Sediment and Contaminant Transport in Surface Waters,
1st ed.; CRC Press: Boca Raton, FL, 2008; DOI: 10.1201/
9781420059885.
(18) Quik, J. T. K.; van De Meent, D.; Koelmans, A. A. Simplifying
Modeling of Nanoparticle Aggregation-Sedimentation Behavior in
Environmental Systems: A Theoretical Analysis. Water Res. 2014, 62,
193−201.
(19) Velzeboer, I.; Quik, J. T. K. K.; van de Meent, D.; Koelmans, A.
A. Rapid Settling of Nanoparticles Due to Heteroaggregation with

ACS Earth and Space Chemistry http://pubs.acs.org/journal/aesccq Article

https://dx.doi.org/10.1021/acsearthspacechem.0c00318
ACS Earth Space Chem. 2021, 5, 980−989

987

https://pubs.acs.org/doi/10.1021/acsearthspacechem.0c00318?goto=supporting-info
https://pubs.acs.org/doi/10.1021/acsearthspacechem.0c00318?goto=supporting-info
http://pubs.acs.org/doi/suppl/10.1021/acsearthspacechem.0c00318/suppl_file/sp0c00318_si_001.pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Robert+M.+Wheeler"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
http://orcid.org/0000-0002-3989-5214
http://orcid.org/0000-0002-3989-5214
mailto:wheeler.1010@osu.edu
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Steven+K.+Lower"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/doi/10.1021/acsearthspacechem.0c00318?ref=pdf
mailto:lower.9@osu.edu
https://dx.doi.org/10.1897/08-090.1
https://dx.doi.org/10.1897/08-090.1
https://dx.doi.org/10.1186/s12302-018-0132-6
https://dx.doi.org/10.1186/s12302-018-0132-6
https://dx.doi.org/10.1186/s12302-018-0132-6
https://dx.doi.org/10.1111/fwb.12701
https://dx.doi.org/10.1111/fwb.12701
https://dx.doi.org/10.1016/j.envint.2016.05.001
https://dx.doi.org/10.1016/j.envint.2016.05.001
https://dx.doi.org/10.1016/j.envpol.2018.01.004
https://dx.doi.org/10.1016/j.envpol.2018.01.004
https://dx.doi.org/10.1016/j.envpol.2018.01.004
https://dx.doi.org/10.1016/j.impact.2020.100277
https://dx.doi.org/10.1016/j.impact.2020.100277
https://dx.doi.org/10.1021/acs.est.6b04054
https://dx.doi.org/10.1021/acs.est.6b04054
https://dx.doi.org/10.1021/acs.est.6b04054
https://dx.doi.org/10.1016/j.marpolbul.2011.09.025
https://dx.doi.org/10.1016/j.marpolbul.2011.09.025
https://dx.doi.org/10.1016/j.marpolbul.2019.03.019
https://dx.doi.org/10.1016/j.marpolbul.2019.03.019
https://dx.doi.org/10.1007/s11426-019-9529-x
https://dx.doi.org/10.1007/s11426-019-9529-x
https://dx.doi.org/10.1002/anie.201405050
https://dx.doi.org/10.1002/anie.201405050
https://dx.doi.org/10.1039/C9EN01016E
https://dx.doi.org/10.1039/C9EN01016E
https://dx.doi.org/10.1039/C9EN01016E
https://dx.doi.org/10.1016/j.jhazmat.2020.123496
https://dx.doi.org/10.1016/j.jhazmat.2020.123496
https://dx.doi.org/10.1016/j.jhazmat.2020.123496
https://dx.doi.org/10.1146/annurev.marine.010908.163904
https://dx.doi.org/10.1039/C5EN00130G
https://dx.doi.org/10.1039/C5EN00130G
https://dx.doi.org/10.1016/j.envpol.2016.10.001
https://dx.doi.org/10.1016/j.envpol.2016.10.001
https://dx.doi.org/10.1201/9781420059885?ref=pdf
https://dx.doi.org/10.1201/9781420059885?ref=pdf
https://dx.doi.org/10.1016/j.watres.2014.05.048
https://dx.doi.org/10.1016/j.watres.2014.05.048
https://dx.doi.org/10.1016/j.watres.2014.05.048
https://dx.doi.org/10.1002/etc.2611
http://pubs.acs.org/journal/aesccq?ref=pdf
https://dx.doi.org/10.1021/acsearthspacechem.0c00318?ref=pdf


Suspended Sediment. Environ. Toxicol. Chem. 2014, 33 (8), 1766−
1773.
(20) Quik, J. T. K.; Stuart, M. C.; Wouterse, M.; Peijnenburg, W.;
Hendriks, A. J.; van de Meent, D. Natural Colloids Are the Dominant
Factor in the Sedimentation of Nanoparticles. Environ. Toxicol. Chem.
2012, 31 (5), 1019−1022.
(21) Maillette, S.; Peyrot, C.; Purkait, T.; Iqbal, M.; Veinot, J. G. C.;
Wilkinson, K. J. Heteroagglomeration of Nanosilver with Colloidal
SiO2 and Clay. Environ. Chem. 2017, 14 (1), 1.
(22) Dale, A. L.; Lowry, G. V.; Casman, E. A. Stream Dynamics and
Chemical Transformations Control the Environmental Fate of Silver
and Zinc Oxide Nanoparticles in a Watershed-Scale Model. Environ.
Sci. Technol. 2015, 49 (12), 7285−7293.
(23) Meesters, J. A. J.; Koelmans, A. A.; Quik, J. T. K.; Hendriks, A.
J.; van de Meent, D. Multimedia Modeling of Engineered Nano-
particles with SimpleBox4nano: Model Definition and Evaluation.
Environ. Sci. Technol. 2014, 48 (10), 5726−5736.
(24) Lowry, G. V.; Gregory, K. B.; Apte, S. C.; Lead, J. R.
Transformations of Nanomaterials in the Environment. Environ. Sci.
Technol. 2012, 46 (13), 6893−6899.
(25) Alimi, O. S.; Farner Budarz, J.; Hernandez, L. M.; Tufenkji, N.
Microplastics and Nanoplastics in Aquatic Environments: Aggrega-
tion, Deposition, and Enhanced Contaminant Transport. Environ. Sci.
Technol. 2018, 52 (4), 1704−1724.
(26) Therezien, M.; Thill, A.; Wiesner, M. R. Importance of
Heterogeneous Aggregation for NP Fate in Natural and Engineered
Systems. Sci. Total Environ. 2014, 485−486 (1), 309−318.
(27) Wang, H.; Adeleye, A. S.; Huang, Y.; Li, F.; Keller, A. A.
Heteroaggregation of Nanoparticles with Biocolloids and Geocolloids.
Adv. Colloid Interface Sci. 2015, 226, 24−36.
(28) Wang, R.; Dang, F.; Liu, C.; Wang, D.; Cui, P.; Yan, H.; Zhou,
D. Heteroaggregation and Dissolution of Silver Nanoparticles by Iron
Oxide Colloids under Environmentally Relevant Conditions. Environ.
Sci.: Nano 2019, 6 (1), 195−206.
(29) Lick, W.; Lick, J. Aggregation and Disaggregation of Fine-
Grained Lake Sediments. J. Great Lakes Res. 1988, 14 (4), 514−523.
(30) Metreveli, G.; Philippe, A.; Schaumann, G. E. Disaggregation of
Silver Nanoparticle Homoaggregates in a River Water Matrix. Sci.
Total Environ. 2015, 535, 35−44.
(31) Tufenkji, N.; Elimelech, M. Breakdown of Colloid Filtration
Theory: Role of the Secondary Energy Minimum and Surface Charge
Heterogeneities. Langmuir 2005, 21 (3), 841−852.
(32) Baalousha, M. Aggregation and Disaggregation of Iron Oxide
Nanoparticles: Influence of Particle Concentration, PH and Natural
Organic Matter. Sci. Total Environ. 2009, 407 (6), 2093−2101.
(33) Horst, A. M.; Ji, Z.; Holden, P. A. Nanoparticle Dispersion in
Environmentally Relevant Culture Media: A TiO2 Case Study and
Considerations for a General Approach. J. Nanopart. Res. 2012, 14
(8), 1014.
(34) Zhou, D.; Bennett, S. W.; Keller, A. A. Increased Mobility of
Metal Oxide Nanoparticles Due to Photo and Thermal Induced
Disagglomeration. PLoS One 2012, 7 (5), No. e37363.
(35) Shen, C.; Bradford, S. A.; Li, T.; Li, B.; Huang, Y. Can
Nanoscale Surface Charge Heterogeneity Really Explain Colloid
Detachment from Primary Minima upon Reduction of Solution Ionic
Strength? J. Nanopart. Res. 2018, 20 (6), 165.
(36) Pazmino, E.; Trauscht, J.; Johnson, W. P. Release of Colloids
from Primary Minimum Contact under Unfavorable Conditions by
Perturbations in Ionic Strength and Flow Rate. Environ. Sci. Technol.
2014, 48 (16), 9227−9235.
(37) Wang, Z.; Jin, Y.; Shen, C.; Li, T.; Huang, Y.; Li, B.
Spontaneous Detachment of Colloids from Primary Energy Minima
by Brownian Diffusion. PLoS One 2016, 11 (1), e0147368.
(38) Gmachowski, L. A Method of Maximum Entropy Modeling the
Aggregation Kinetics. Colloids Surf., A 2001, 176 (2−3), 151−159.
(39) Rosen, J. A Statistical Description of Coagulation. J. Colloid
Interface Sci. 1984, 99 (1), 9−19.

(40) Cohen, R. D. The Self-Similar Cluster Size Distribution in
Random Coagulation and Breakup. J. Colloid Interface Sci. 1992, 149
(1), 261−270.
(41) Cohen, R. D. Evolution of the Cluster-Size Distribution in
Stirred Suspensions. J. Chem. Soc., Faraday Trans. 1991, 87 (8), 1163.
(42) Elimelech, M.; Gregory, J.; Jia, X.; Williams, R. A. Modelling of
Aggregation Processes. In Particle Deposition & Aggregation; Elsevier:
Amsterdam, Netherlands, 1995; Chapter 6, pp 157−202.
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