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Spontaneous self-organization (clustering) in magnetically oriented bacteria arises from attractive
pairwise hydrodynamics, which are directly determined through experiment and corroborated by a simple
analytical model. Lossless compression algorithms are used to identify the onset of many-body self-
organization as a function of experimental tuning parameters. Cluster growth is governed by the interplay
between hydrodynamic attraction and magnetic dipole repulsion, leading to logarithmic time dependence
of the cluster size. The dynamics of these complex, far-from-equilibrium structures are relevant to broader
phenomena in condensed matter, statistical mechanics, and biology.
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One of the distinguishing characteristics of biological
systems is the emergence of order from the interactions of
discrete active components operating far from equilibrium.
Insights into how these interacting components produce
functional structures across many length scales is of
fundamental importance in biological systems, from col-
lections of eukaryotic cells [1] and bacteria [2], to ant
colonies [3] and bird flocks [4]; the phenomena extend to
nonbiological active matter such as colloids [5,6] and
macroscopic robot swarms [7]. A complete description
of these systems requires not only an understanding of the
microscopic interactions between components, but also the
principles governing the dynamics of the many-body states.
In this Letter, we present an experimental and theoretical
analysis of both the microscopic hydrodynamic interactions
and onset of emergent many-body self-organization in a
prototypical active matter system [8,9]—a suspension of
motile bacteria.
The bacterial species selected for this study

(Magnetotacticum magneticum AMB-1 [10]) is chosen
for its innate magnetism, which renders it amenable to
direct external control [11–15], allowing systematic impo-
sition of orientational coherence on the population.
Furthermore, the species is motile—the chemically pow-
ered flagellum (a thin helical appendage responsible for
cellular propulsion) provides the source of activity. This
attribute gives rise to attractive hydrodynamic interactions
between cells that produce self-organized states (clusters).
To quantify the pairwise hydrodynamic interactions

between two cells, a dilute suspension of AMB-1 is placed
in a fluid cell and subjected to an external field
(Hz < 100 G) oriented perpendicular to the surface, using
a previously described system [15,16]. As the cells

encounter the surface, they either swim in circular planar
orbits stabilized by hydrodynamic effects [17], or align
normal to the surface and execute a lateral random walk (in
a magnetically stabilized state) [15]. Pairs of cells in this
latter state experience attractive hydrodynamic interactions
and rotate about their center of mass {Figs. 1(c) and 1(e),
inset and the Videos in Supplemental Material [18]}. To
determine the spatial dependence of these interactions, a
pair of AMB-1 cells is isolated in the fluid cell, far from
other cells. The pair is perpendicularly oriented under
constant Hz [Fig. 1(a)] causing them to approach one
another and form a stably rotating doublet. Once the cells
have been brought together, the fields are removed (ran-
domizing cell positions) or tilted (navigating cells along
diverging paths [15]). When separated by the desired
distance Hz is reapplied and the flow field mediated
intercellular interactions return the cells to close contact.
This process is repeated until a number (87) of trajectories
are compiled, yielding the time of flight (Δt) for the cells
to arrive in the doublet configuration (close contact)
and angular velocity (ω) as a function of intercellular
distance (r), as shown in Figs. 1(c) and 1(e).
We attribute the attractive interaction between cells to

Stokeslet (1=r) [19] dominated flow fields (the flow arising
from a point force) associated with the flagellum. Freely
swimming organisms at low Reynolds number (Re) are
generally considered to be force and torque free [20].
Hence, the leading order term in the multipole expansion of
the flow field is taken to be a Stokeslet dipole. However, a
power series fit suggests the presence of lower order terms
[Fig. 1(c)], implying that an unpaired force monopole fm
acts on the fluid. The force free condition is then main-
tained by the balance of the flagellar thrust by the surface.
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We therefore model the cell’s flow field using a singularity
system comprising a Stokeslet along with its image system
{accounting for the surface [21], Fig. 1(b)}. The radial
component of the flow velocity urðrÞ in the plane of the
singularity, which is assumed to be proportional to the force
between the cells, is given by,

urðrÞ ¼ −
fm
8πη

12h3r

ð4h2 þ r2Þ5=2 ¼
1

2

dr
dt

ð1Þ

where h the height of the singularity; dr=dt is the rate of
change of the intercellular separation and η the dynamic
viscosity of water. The time Δt required to travel from an
initial separation r to a final closest contact distance d is
determined by integrating Eq. (1). Least squares fits to a
running average of the data show good agreement and yield
reasonable estimates for the three parameters, fm, d, and h.
In particular, a singularity height of h ¼ 2.6� 0.1 μm

(comparable to average cell length ∼3 μm [22]), a mini-
mum intercellular spacing of d ¼ 1.8� 0.2 μm (agrees
with optical image of doublet) and a flagellar thrust
fm ¼ 0.20� 0.02 pN (consistent with previous measure-
ments of hydrodynamically analogous species [23–25]) are
obtained.
The source of the rotational motion is ascribed to a

rotlet dipole field (∼1=r3) emanating from the rotating
flagellum and counterrotating body [21] [Fig. 1(d)]. The
measured angular velocity of the cells about their center of
mass along with a fit to a rotlet dipole flow field model
[Fig. 1(e)] shows good agreement. The observed clockwise
rotation (viewed from above) for all intercellular separa-
tions r implies the net rotation of the cell pair is dominated
by coupling of the cell body (rather than the flagellum) to
the rotlet dipole field. The body has a larger drag coefficient
and hence couples more strongly to flow than the flagellum
leading to unidirectional motion. The rotation of the
flagellum merely attenuates the net effect (rotlet dipole
flow field decays as ω ∼ 1=r3, relative to rotlet field
ω ∼ 1=r2).
In the many-body case, the attractive hydrodynamic

forces result in the formation of clusters, which continually
rearrange and rotate under the influence of the rotational
effects {Fig. S1(a) and the Video in Supplemental Material
[26]}, analogous to previous observations of spontaneously
oriented nonmagnetic bacteria [27,28]. The effect of these
rotational flows, along with the packing problems created
by the spirochete AMB-1 cell morphology [10], prevent the
onset of crystalline order within the cluster. Numerical
simulation of the dynamics based on an Euler method,
including a Stokeslet derived interaction with a screening
cutoff and a stochastic force accounting for Brownian and
biogenic noise displays good agreement with the exper-
imental results [29].
To quantify the self-organization, a Lempel-Ziv com-

pression algorithm [30] is applied to each recorded image.
As recently demonstrated [31], this algorithm, which is
widely used in file compression applications, yields the
computable information density (CID), fC, which bounds
the Shannon entropy [31] and is defined as

fc ≡ LðxÞ
L

; ð2Þ

where LðxÞ is the length of a losslessly compressed string x
and L is its uncompressed length. For nonequilibrium
processes, traditional methods for characterizing order-
disorder transitions often fail, and, in many instances,
the order parameters are unknown. Nonetheless, the CID
provides a generic measure of the order in the system
without knowledge of the particular nature of the ordering.
Simply compressing each successive microscopy image
and recording the file size allows the determination of the
experimental conditions under which the information

(a)

(b)

(d) (e)

(c)

FIG. 1. (a) schematic of oriented cells and resulting hydro-
dynamic interaction. (b) flow field of a pure Stokeslet at height h
from a surface with image system (force monopole, force dipole,
source dipole). Inset, profile of the velocity (Eq. (1)) derived from
the flow field along the dashed line at height h above surface.
(c) time of flight (t) vs intercellular spacing (r) for 87 cellular
trajectories from three distinct pairs of cells, along with fit to
model (in red) and power series (blue) revealing presence of
lower order (1=r) terms. Vertical line indicates the minimum cell
separation d from fit. Inset, microscopy images of cells forming a
rotating doublet. (d) Flow field of a rotlet dipole and image
system, along with the singularities. (e) the angular velocity (ω)
vs r with fit to rotlet dipole (1=r3) model (red).
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entropy drops in time. This allows a phase boundary to
be constructed without explicitly identifying an order
parameter.
To define the onset of self-organization, a pulsed field

sweep is conducted. Figure 2 illustrates self-organization
for a suspension observed in wide field (20x objective, see
Videos in Supplemental Material [32]). At t ¼ 0, the field
(Hz ¼ 10–100 G) is turned on resulting in an initial rise
in fc. This transient (∼1–2 seconds) results from the rapid
increase in the number of oriented cells swimming towards
the surface, as well as the finite reorientation time of cells
already at the surface upon application of Hz. Once the cell
density stabilizes (∼2.5 s after Hz is introduced), fc begins
to decrease as self-organization proceeds. Figure 2(a)
illustrates fcðtÞ for a sequence of 10 field strengths (at
roughly constant density), each beginning from a random
cell configuration. As the field strength is decreased, the
decay of fc with time is reduced until no significant
reduction occurs over the interval. The gradual attenuation

of the decay [Fig. 3(a)] indicates the disappearance of order
as the magnetic field is reduced. It is noted that the
structures themselves undergo dramatic qualitative changes
ranging from uniform density (t ¼ 0 s), filamentary net-
works (t ¼ 2.5, 5.0 s) and isolated high density islands
(t ¼ 25, 50 s), for the high field (100 G) example depicted
in Figs. 3(a) and 3 (inset).
To determine the effect of cell density on self-

organization, pulsed field sweep (10 G–100 G) experiments
were repeated over a range of densities. Between each field
sweep, Hz is removed, allowing the cells to orientationally
decohere and randomize their positions. Because cells
swim freely in the zero-field state, a small fraction move
out of the field of observation due to aerotaxis, leading to a
continual reduction in the density (ρ). To track this decay, ρ
is calculated directly from images by counting the cells
(before each application of Hz), using ImageJ [33]. When
the mean intercellular spacing in this disordered state
approaches the optical size of the cells, this method no
longer reliably measures the density at the surface and
hence merely provides a lower bound (see Fig. 3).
To determine the presence of order at a given ρ and Hz,

the change in fc over a fixed time interval (55 s) is
calculated. To compensate for density fluctuations within
the interval, the initial and final values of fc are respec-
tively scaled by the zero-field CID (f0), collected before
and after application of the field. If the scaled value (fc=f0)
drops more than the width of the noise in fc=f0 during the
time the field is applied, we infer the presence of order.
Figure 2(b) shows the initial (red) scaled CID (fc=f0)

plotted alongside its final (black) value for several field

(b)

density

0.007 µm-20.03 µm-2

Hz = 100 G

0.06 µm-2

50s

10 G

(a)

FIG. 2. (a) fcðtÞ for a population subjected to 10–100 G fields
for 55 seconds (bold arrow indicates increasing magnetic field).
The bolder, red curve shows the most dramatic drop in fc under a
100 G field. As the field is decreased (other colors), the extent of
the decay in fc is reduced until at low values it remains nearly
static in time. Inset: selected microscopy images from the self-
organization process associated with the red (100 G) curve, taken
at t ¼ 2.5, 5, 25, and 50 s. (b) initial (red) and final (black) values
of the scaled CID (fc=f0) as a function of field strength for
various densities. As density decreases (left to right), the self-
organization disappears at all field strengths (as seen in the
decrease in the shaded area) Inset: selected images from 60 G
field pulse showing initial (red outline) and final (black outline)
representative configurations.

Order

Disorder

FIG. 3. Phase diagram illustrating the boundary between
clustered states (closed circles) and disordered states (open
circles). The color indicates the percentage drop in the scaled
CID (fc=f0). The black line is a approximate power law fit to the
phase boundary. The gray line indicates the threshold beyond
which the density may not be reliably determined optically.
Hence, for these points, the recorded density should be inter-
preted as a lower bound.
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sweeps at different densities. Figure 2(b) (left) is a high
density case in which fc=f0 drops (shaded region) more
than the noise at all measured field strengths. At a
slightly lower density, Fig. 2(b) (center), the onset of
self-organization only occurs when clear separation in
fc=f0 is first evident at Hz > 20 G. As the density is
further reduced, the order disappears entirely (as evidenced
in the reduction in the shaded area) at even the highest
magnetic field strengths [Fig. 2(b), right] indicating a low
density of oriented cells.
Figure 3 summarizes results of 13 field sweeps con-

ducted with the population corresponding to Fig. 2, which
allows for the construction of a phase boundary separating
ordered (open circles) from disordered states (closed
circles). The color bar indicates the percentage drop in
fc=f0 over the 55 s interval. Order disappears as the
orientational coherence across the population is destroyed
when Hz approaches zero. This decoherence occurs by the
following: (i) the interplay between surface-induced hydro-
dynamic torques and the magnetic interactions that result in
planar swimming [15,17] and (ii) an increase in the
orientational noise [22]. Further, as ρ is reduced, stochastic
forces begin to dominate the coherent hydrodynamic
interactions when the timescale for attractive interaction
becomes comparable to that of cell diffusion. As a result,
the cells fail to attain an ordered state.
To understand the kinetics of the clustering process,

the time evolution of the radial distribution function gðrÞ

(Fig. 4) is computed from the microscopy images. Initially
(t ∼ 0.1 s) gðrÞ is largely flat, apart from a cutoff associated
with the cell size. As clustering proceeds, a peak associated
with cell-cell close packing separation distance grows and
widens in time. The width of the peak is associated with
the largest cluster dimension (∼20 μm), while its area is
proportional to the fraction of cells in the clustered state. An
additional broad peak centered at an increasing separation
distance is associated with the mean cluster-cluster dis-
tance. The probability of finding cells separated by larger
distances (> 100 μm) is repressed relative to a random
distribution (dashed line), corresponding with the distance
between clusters and voids of reduced density.
Figure 4 (inset) shows the growth of the primary peak

(r ∼ 5 μm) area IðtÞ, relative to the area at the initial time
I0. After a transient (∼1 s), the growth of the IðtÞ, and
hence the size of the clusters, scales logarithmically in time.
It has been previously shown both theoretically and
experimentally that Brownian coalescence of monopolarly
charged suspensions leads to logarithmic time dependence
[34–36]. In these systems, particles come into contact
through random collisions and stick through short-range
contact forces (e.g., a van der Waals interaction). As the
clusters accumulate charge, repulsion begins to suppress
the growth rate. Similarly, in the present system, attractive
hydrodynamic interactions are opposed by magnetic
dipole-dipole repulsion. While the hydrodynamic attraction
and magnetic repulsion are both predicted to have the same
long range asymptotic behavior (∼1=r4), the hydrodynamic
effects experience an effective cutoff, due to screening and
stochastic effects. The hydrodynamic forces are of greater
strength at μm range (∼pN) relative to the magnetostatic
forces (∼0.01 pN, for magnetic moments ∼10−16 Am2

[22]) for pairs of cells. However, as the clusters grow and
increase in total magnetic moment, the magnetic forces
become comparable to the hydrodynamic forces. Thus, the
structure and logarithmic kinetics of the clusters may be
understood as an interplay between attractive hydrody-
namics with a finite range and repulsive magnetic inter-
actions that scale with the cluster size, thereby inhibiting
the continued rapid growth of the clusters. In this sense, the
process may be understood as an active matter analog to the
self-focusing regime in passive charged colloids [34].
Interestingly, as shown in Fig. 4 (inset) the CID also scales
logarithmically in time after an initial transient (t ∼ 1 s).
This suggests a direct physical interpretation of the CID as
providing information about the configurational entropy
of the cells, which decreases as they coalesce, and are
constrained to occupy a smaller volume.
In conclusion, we have shown that when oriented near a

surface, AMB-1 experience attractive hydrodynamic inter-
actions arising from their flagellar activity, which are well
captured by a simple analytical model based on a pure
Stokeslet and its image system. Moreover, these inter-
actions along with dipolar magnetic repulsion, give rise to
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(fc-f0)/f0(I(t) – I0)/I0
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0 1 10 100
t (s)
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FIG. 4. gðrÞ, offset for clarity at t ¼ 0.1, 1.5, 10, and 50 seconds
after application of a 100 Oe external field (corresponding with
the images in Fig. 3(a). The dashed line corresponds with the
value of gðrÞ expected for a noninteracting gas (a flat distribu-
tion). Inset shows a logarithmic increase in the peak associated
with clustered cells (red) and the logarithmic scaling of the CID
(blue) in time. Vertical dashed line indicates the onset of
logarithmic scaling at t ∼ 2 s after the initial transient.
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spontaneous, self-organized bacterial clusters where the
CID (which bounds the Shannon entropy) reveals the phase
boundary defining the onset of self-organization. Kinetics
of cluster growth are governed by the interplay between
hydrodynamic attractive forces and magnetic repulsion,
analogous to the self-focusing of charged inactive colloids.
Taking advantage of the high degree of experimental
control and theoretical tractibility of the present system,
future studies should address broad questions in non-
equilibrium active self-organization. Particularly salient
are questions regarding the specific nature of the ordering
and what critical behavior, if any, accompanies the onset of
self-organization. Additionally, the thermodynamic impli-
cations of the relationship between dissipation and structure
formation in active systems should be explored.
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